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Weakly controlled resonance oscillations of a non-linear system are investigated. Small random perturbations results in a deviation 
of the frequencies from the resonance values. The aim of the control is to keep the frequencies in a small neighbourhood of the 
resonance surface. It is shown that small deviators of the frequencies from the given values can be found as a solution of a linearized 
diffusion equation. This enables the dynamic programming principle to be applied to the control problem. A bounded control 
which minimizes the mean time the system resides in the near-resonance domain is constructed. It is shown that the control is 
independent of the perturbations and the structure of the conservative part of the system. The frequency control for a system 
of coupled oscillators is considered as an example. © 2004 Elsevier Ltd. All rights reserved. 

Standard transformations reduce the equations of the perturbed near-resonance motion of an oscillatory 
system to the equations of motion of an "equivalent pendulum", with domains of oscillations and 
rotations, and with the separatrix separating these domains [1, 2]. Passage across the separatrix from 
the domain of oscillations to the domain of rotations is associated with an extensive increase of the 
frequency deviation and breakdown of resonance. The aim of the control is to prevent the system from 
leaving an admissible domain under random perturbations. 

This model enables the well-developed asymptotic methods for controlled oscillatory system to be 
employed [3, 4]. Control against escape from the resonance domain out the maximum time interval 
has been proposed [5]. Formally, the procedure developed could be applied to a wide range of systems. 
However, in practice, the investigate of a control problem for a stochastic resonance system over a large 
time interval is quite complicated. This paper considers more reverse control constraints, allowing the 
control problem to be studied over a relatively small time interval. The aim of the control is assumed 
to be to keep the system frequencies near resonance. The control problem for small deviations is reduced 
to the control problem for a linear system of variational equations for small deviations. The criterion 
and the constraint of the problem are also presented in terms of small deviations. A similar deterministic 
problem has been investigated in [3]. The solution of the variational equations for a stochastic system 
is approximated by a diffusion process [6, 7]. This enables the well-known problem of control for a linear 
stochastic system to be substituted for the original non-linear control problem. The solution of the 
stochastic control problem can be found by making use of the dynamic programming principle. The 
control constructed satisfies the specified constraints and maximizes the mean time the system resides 
in the near-resonance domain 

1. T H E  M A I N  E Q U A T I O N S  A N D  T H E  S T A T E M E N T  O F  T H E  P R O B L E M  

A two-frequency system with a scalar slow variable will be considered in details.The extension to a multi- 
frequency system is discussed as an example in Section 3. 

The equations of motion are reduced to the standard form with the slow and fast variables 

= ef(y,  01, 02) + e~nF(y, 0 l, 02)U + EA(y, 01, 02)~(t ), y ~ Y, u ~ U 

Oi = o~i(y) + e f i (y ,  01, 02) + enFi(Y, 02, 02)u + eAi(Y, 01, 02)~(t), 0i(mod27t) (1.1) 

i = 1 , 2  
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where Yis an open domain, Uis a closed domain inR1, and e > 0 is a small parameter. The exponent 
n in the coefficient e n is defined in such a way that the control would remain weak but counteracting 
the external perturbations in line with the requirements of the problem. 

The right hand-sides of system (1.1) are assumed to be 2n-periodic in 01, 02 and smooth enough in 
all variables, for the solution of system (1.1) to exist and the required transformations to be valid for 
any admissible control. The perturbation {(t) is considered as a zero-mean strong-mixing random process 
[7]. For instance, a Gaussian Markov process and a bounded random process with a rapidly decaying 
correlation function satisfy the requisite strong mixing condition [7]. 

Following the well-known approach [1], we will define the resonance relating between the system 
frequencies. We consider the time average ®(y, 0)1, 02) for the function f(y, 01, 02). 

T 
1 

O(y, CO l, 0)2) .w- lira =..If(y, 0)it + 01, O)2t + 02)dt 
T -4 "ol  "f 

0 

In the function ®(y, 0)1, 0)2) is uniformly continuous in 0)1, (o 2 for all y e Y, then the system is non- 
resonant, and O(y, f-Ol, 032) = (f(y, 01, 02)) where (.) denotes the phase average. We will assume that 
the function O, considered as a function of the frequencies 0)1, 0)2, is discontinuous on the line 

p(y) = mlOll(y ) + m20~2(y ) = 0 (1.2) 

for certain integers ml, m2 not equal to zero simultaneously. Equation (1.2) defines the resonance relation 
between the system frequencies. Let y* be a unique isolated solution of Eq. (2.2) such that 

p(y*) = O, dp(y*)dy = raO  (1.3) 

Also, we assume that the time average of the functions 

F(y, o)lt + 01, oa=t + 02) and ZX(y, o l t  + 01, o~2t + 02)A(y, 01, 02) 

do not generate new resonance relations in a small vicinity of the point y*. 
Let the unperturbed system exhibit a stable resonance mode of oscillations with frequencies 0)1(y*) 

and 0)2(y*), satisfying condition (1.2). The aim of the control is to keep the system frequencies in a 
neighbourhood of resonance in the presence of random perturbations, resulting in deviation of the 
variably y form the value y* and leading to violation of the resonance condition (1.2). 

We will formulate this requirement as an optimal control problem. We will define an admissible 
domain and find a control, which maximizes the mean time the system resides within the admissible 
domain. 

Following the standard procedure [1, 2], we introduce the new variables ~a and % corresponding to 
the frequency and phase deviation, respectively. We write 

1/2 
bt~) = 9 ( y )  = m l 0 ) t ( Y ) + m z 0 ) z ( y ) ,  I.t = g 

(1.4) 
q) = rnl01 + m202 

It follows from definitions (1.3) and (1.4) that the relations 

2 -1 
y = Y(I.tv) = y* + g y l  +1 -t .... Yl = r v 

01 = 0, 02 - m21(qo-m10) 
(1.5) 

hold in the near-resonance domain. Substituting Eqs (1.4) and (1.5) into system (1.1), we obtain the 
equations in the standard form with a small parameter g 

0 = k t [ f* ( tp ,  0 )  + A*(tp,  0 ) ~ ( t ) ]  + ILl, 2n-  1F*(~0, 0 ) u  + g t2~ l  

' 2nF*t '"~ O)u  + ~2(I) 2 (1.6) = ~L1) + p, 2~,~, 

2n , 
0 = o* + btml v + Ix F 3 ((P, 0)u + tx2~3 
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where 

0 = 01, (o* = o ( y * ) ,  ~1 = O)y(y*) 

The functions/'*, F*, A* are defined by the relations 

f*(tp,  O) = r - l f ( y  *, O, 02( % 0)) (1.7) 

etc. The residual terms Oi(a), % O, u, {(t), IX) on the right hand-sides of Eqs (1.7) vanish on taking the 
limit as tx ~ 0, and their explicit form is unimport for the further transformations. 

We now define an admissible domain of motion. In system (1.6), we separate out the generic 
conservative subsystem 

v ' =  l}(~), {P'= v (1.8) 

where ~({p) = (f({p, 0)) and a prime denotes the derivative in the "slow time" z = Ixt. Equations (1.8) 
describe the motion of a pendulum with a periodic potential U({p) such that U,(q}) = -[3(q0). In the phase 
plane, the domain of the pendulum oscillations is associated with a closed domain E, bounded by the 
separatrix. This domain of motion is considered as admissible. Passage across the separatrix from the 
domain of oscillations to the domain of the pendulum rotation corresponds to an extensive increase 
in the frequency deviation, and is associated with the breakdown of resonance. Let the potential U({p) 
have a minimum at the point {p*, that is, [~(q}*) = 0, 13{p({p*) = c < 0. The stable fixed point (y*, {p*) 
corresponds to resonance in the unperturbed system. 

Hence, the control problem is reduced to control for the non-linear system (1.6) within the admissible 
domain (v, {p) e E. A similar problem has been investigated and led to quite complicated results [5]. 
We shall simplify the control problem by considering small deviations from the unperturbed state. We 
define 

I t l I 2 p  = ( q ) _ t p , ) ,  IXl/2Q = v (1.9) 

and write the control problems in terms of the variables P and Q. To keep the system frequencies in a 
small neighbourhood of resonance means to keep the process in a neighbourhood D C E of the point 
P = Q = 0. The aim of the control is thus to maximize the mean time until the process {P(~, g), 
Q(z, g)} reaches the boundary F of the domain D. The first exit time is defined as T ~. The shape of 
the domain D depends on the constraints of the problem. We shall assume that D is an open simply- 
connected domain in R2, and its c losure / )  is symmetric about the origin, that is {P, Q} e D e=~ 
{-P, -Q} e /} .  The control constraints take the form ]u[ ~< U0. Under  these assumptions, the criterion 
and the constraints of the problem can be written as 

Jr(u)  = M T  r" 

T ~t = inf{'~: P(I,  It), Q('c, It) ~ D/P(O, g), Q(O, g) ~ D, lu] < U 0 } 
(1.10) 

The optimal control/,top t is defined as 

Uoo t = arg max Jr(u) (1.11) 
tul <- Uo 

We regard to the changes of variables (1.4) and (1.9), the control strategy can be interpreted as the 
.3/2 • locking of the system frequencies in a g -nelghbourhood of the resonance point. This problem is 

meaningful, as the admissible domain E is of order g, and the system remains within this domain, keeping 
away from the boundary. 

Substituting relations (1.9) into system (1.6) and taking Eqs (1.8) into account, we write 

Q' = I.t-l/2[~l(ixl/2P + tp*) - 13(tp*)] + 11-1/2A*(IXl/2p + tp*, 0)~('l:/it) + 

+bt2n-5/2F*(gl/2p +tp*,O)u+g-1/Zb( i t l /2p +{p*,O)+p.1/2dpl, Q(O) = 0 
(1.12) 

p ,  Q + I X Z n - 3 / 2  , , 1/2 n = F 2(~ r + t p * , 0 ) u + i t l / 2 ~  2, P(0) = 0 

' 2 n - - l L " * t ' ' l / 2 D - - ' ^ *  0 ) U  + Itl/2cI) 3 
0 '  = I t - l { o * + ~  r 3  1,1~ r m  W , 
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where 

b((p, 0) = f*(cp, 0) - [~(¢p), (b(cp, 0)) = 0 

Hence, the control problem is reduced to the minimization of criterion (1.10) along the trajectories of 
system (1.12). 

2. T H E  A S Y M P T O T I C  S O L U T I O N  OF T H E  P R O B L E M  

The theorem on small (normal) deviations [6, 7] is used to analyse Eqs (1.12). We will formulate this 
theorem for an uncontrolled perturbed system and then extend it to controlled system (1.6). 

We consider the equation 

= gb(t, z) + B(t, z)~(t), z(O) = Zo (2.1) 

is the domain z e Z e Rn, 0 ~< t < oo. The vector b(t, z) the matrix B(t, z) are assumed to be uniformly 
continuous and twice continuously differentiable in z and uniformly continuous and bounded in the 
domain considered. The process {(t) is a random strong mixing process in Rt, M{(t) = 0. Suppose the 
following conditions hold. 

1. The limits 

to+ T 

lim i r-*~l  I b(t 'z)dt= [3(Z), r-~lim 1 I 
t 0 t0 

to+T to+T 

lira 1 T~*oT ~ ds I Aki(s't'z)dt = o~ki(z) 
l 0 t 0 

to+T 
Ob(t,Z)dt = O~(z) 
-7-[--z ~z 

(2.2) 

where 
l 

Aki(S, t, Z) = Z BkJ (s' Z)Bmi(t' z ) M [ ~ J  (s)~m(S)];  k, i = 1 . . . . .  n 
m , j= l  

exist uniformly for z ~ Z, to ~ 0. 
2. The truncated system 

= g[~(z), z(0) = Zo (2.3) 

possesses the solution z*(" 0 ,  "c = gt. 
Then the process 

Z(x, p.) = -~g(z(t, g) -z*(~) )  (2.4) 

converges weakly as g ~ 0 over the time interval [0, To] to the Gaussian process ~('c), satisfying the 
linear equation 

~'(x) = C(z*(x))~(x)+~(z*(x))w'(x) ,  4(0) = 0 (2.5) 

where w(z) is a standard Wiener process, the matrix of the drift coefficients is C(z) = O~/Oz, and the 
T diffusion matrix is defined as cy(z)• (z) = ~(z). The deterministic part of system (2.5) corresponds to 

the variational equation for truncated system (2.2). The second term on the right hand side of Eq. (2.5) 
is found taking into account the convergence of the perturbation g-mB('c/g, z)~('c/g) to the process 
~(z)w' ('c) with the diffusion coefficient (2.2). 

The conditions for the limit (2.2) to exist imply that the integrand in formulae (2.2) can be averaged. 
It has been shown [7] that the derivation of the limiting equation (2.5) involves two steps. First, the 
variational equation is derived for the non-averaged system and this equation is then averaged. 
Applications of the partial averaging procedure to stochastic systems [4, 8] implies that process (2.1) 
converges weakly to the solution ~g('c) of the partially averaged equation 
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where 

t G(z) = K(z/g,z*(z));.(x)+~(z*(x))w'(~), ; ~ (o )  = o 

K(t,  z) = C(z) + k(t, z), k(t, z) = 3[b(t, z ) -  ~(z)]/Oz 

(2.6) 

In order to take the limit in Eqs (1.12) as g ~ 0, we use the theorem on small deviation in the form 
(2.6). We put n = 5/4. Then, when g ~ 0, the central term in the first equations of (1.12) is retained 
in the lending order approximation and is smaller in other equations. Comparing equalities (1.5), (2.1), 
(1.9) and (2.4) and making use of Eq. (2.6), we obtain that, for any admissible control, the process 
{P('c, g), Q('c, g)} converges weakly as ~t ~ 0, 0 <~ z < To, to the solution {p('c, g), q(z, ~t)} of the partially 
averaged system 

p ' = q ,  p ( O ) = O  
q' = cp + Fo(O)u + cw'(x), q(0) = 0 (2.7) 

where 

Fo(0 ) = F*(tp*,0), 0 = co*rig 

System (2.7) is similar to Eq. (2.6) with an additional term associated with the effect of the control. 
The diffusion coefficient is defined by the formula. 

2 = I R(s) (A*(q0*, O)A*(q0*, 0 + co*s))ds (2.8) 

Under the assumptions of Section 1, the function A*(q~*, 0)A*(q~*, 0 + c0*s) does not yield additional 
resonance relations. This enables us to substitute the phase average for the time average and obtain 
formula (2.8). 

Let "c g be the first moment the process {p(z, ~t), q('c, g)} reaches the boundary F of the domain D, 
and kU(u) = M'c g, [u [ ~< U0. We define the control 

u ~ = a r g  m a x  l ~ ( u )  (2.9) 
lul -< Uo 

It follows from the weak convergence {P, Q} ~ {p, q} that [7] 

for any admissible control u ~ U. This implies [4] 

Jg(u g) - Jg(uopt) -4 0, g -4 0 (2.10) 

that is the control u" is quasi-optimal with respect to the original problem. Hence, problem (1.10)-(1.12) 
can be replaced by a simpler problem (2.7), (2.9). 

Problem (2.7), (2.9) is degenerate, as the perturbation is involved only in the second equation of system 
(2.7). However, the dynamic programming principle can be applied, with the solution interpreted in a 
generalized sense [9, 10]. 

The dynamic programming equation for problem (2.7), (2.9) takes the form 

~V OV OV 6202V [- . . . .  0 V ]  
0-~ + Cp~q + q~p + - ~ - - w  + max i r o t u ) u ~ -  ! = -1, p, q ~ D 

z 3q ~ [.l<voL oq_l (2.11) 

V ( x , p , q )  = 0, p , q ~  F 

where 0 = o3*z/I.t. 
From Eq. (2.1), with due regard to the initial conditions (2.7), we deduce 

. 3V 
u ~ =  Uo sign [Fo(0)~qq] (2.12) 
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Substituting formula (2.12) into Eq. (2.11), we obtain the equation 

8 v  ~v  8 v  ~ O v t 
- - +  C p ~ q  + = Ox q'~p + " ~ V  + U° F°(O) -1 ,  p, q e O (2.13) 

V('c,p,q) = O, p , q ~  F 

We shall demonstrate that the function V possesses a unique maximum at the point p = q = 0. In 
order to prove this, we replace Eq. (2.11) by a simpler homogeneous averaged equation. Averaging of 
Eq. (2.13) in the fast phase 0 = o)*'c/g leads to an equation which is independent of the slow variable 

p, q e D  
(2.14) 

OV 0 8 V  0 + (3282V0 + " . 10v°[ 
c p - ~ q + q - - ~ p  "- f '~q2 O0]0]"~'q I = -1'  

V°(p,q) = O, p ,q~  F 

where f0 = (IF0(0) I). The uniform convergence [11] 

V(x ,p ,q )~V°(p ,q ) ,  p, qe  D, 
g-.-)o 

leads to the relation 

l"(u") = V(0,0,0)ff-~0V°(0,0) 

O< x<-_x" (2.15) 

(2.16) 

It follows from Eqs (2.11)-(2.14) and the symmetry of the domain / )  that V°(-p, -q) = V°(p, q). If 
a bounded solution of Eq. (2.14) exists, the series expansion of the even function l)°(p, q) only involves 
even positive exponents of the arguments. This implies 

O V ° 3 V ° bq ~ 0, p q 0 (2.17) 

In turn, we deduce from relations (2.4) and (2.17) that 3ZV°/3q2 = -2/~ 2 < 0 f o r p  = q = 0. This 
means that the function V°(p, q) has a maximum in q at the pointp  = q = 0. 

We will show that the pointp  = q = 0 is the unique maximum of the function in the domain D. Let 
another point in D exist, at which the function V"(p, q) is a maximum. Then an intermediate point exists, 

2 2 at which the function V°(p, q) is a minimum, that is ~V°/bq = ~V°/Op = 0. However, ~ V°/Oq > 0 for 
p =/3, q = ~. The last inequality contradicts Eq. (2.14). Thusp  = q = 0 is the unique maximum of the 
runction V'(p, q) in the domain D. 

In particular, the maximum at q = 0 implies that 

. b V  ° 
slgn--~-q = -signq (2.18) 

for allp, q e D. Using relation (2.18), we reduce Eq. (2.14) to the form 

OV 0 OV 0 a202V 0 ~V 0 
cp--~q + q-~p + 2 3q 2 UofoZ~q signq = -1,  p, q ~ D (2.19) 

V°(p,q) = O, p , q ~  F 

Relations (2.12), (2.18) and (2.19) are used to construct feedback control. We will consider two versions 
of the feedback control following from these relations 

1) ua(v, O) = -UosignFo(O)signv 
(2.20) 

2) u2(1) , y, 01, 02) = -Uosign[r-lF(y, Ol, 02)]signo 

where, by equalities (1.4) and (1.7) 

Fo(0 ) = r-lF(y *, 01, 02(01, (p*)) 



Near-resonance frequency control in the presence of random perturbations of parameters 265 

We will show that the controls ul and u 2 are quasi-optimal with respect to the perturbed system (1.12). 
To prove this, we calculate the mean time MT~ and MT2 ~ required to reach the boundary of the domain 
D by the trajectories of system (1.2) in case u = ul or u = u2, respectively. Substituting ul or u2 into 
system (1.1) and reproducing the transformations of Sections 1 and 2, we obtain the weak convergence 
as g -~ 0 of the solution P('c, ~t), Q(~, g) of system (1.12) to the solutionp0('c), q0('c) of the averaged 
system 

P0 = q0 P0(0) = 0 
(2.21) 

q'o = cpo-foUosignqo+GW'('c), q0(0) = 0 

System (2.21) is similar to system (2.7) but it is obtained by averaging in all right-hand side terms, 
including the control terms. In particular, the weak convergence {P, Q} --9 {p, q}, {P, Q} ~ {po, q0} 
implies [7] 

MT~ -~ MT 0, MT2 ~ ---) MT 0, g ---) 0 (2.22) 

where To is the first moment the process {p0(x), q0('0} reaches the boundary of the domain D, that is 

T o = inf{~: po(Z), qo('C) ~ D} 

In turn, it follows from Eqs (2.19) and (2.21) that 

MT 0 = V°(0, 0) (2.23) 

Comparing relations (2.10), (2.16), (2.22) and (2.23), we obtain that 

IJ~t(ul,2) - J"(Uo~) I ---) 0, I.t --* 0 (2.24) 

The implies that the controls (2.20) are quasi-optimal and independent of the perturbations and the 
structure of the uncontrolled system. The physical interpretation of the solution follows from Eqs (2.21): 
in consideration of the "equivalent pendulum", the controls ul or u2 can be interpreted as Coulomb 
friction with the largest admissible coefficient. 

If a different criterion and other control constraints are chosen, control may be dependent on the 
system structure and perturbations. However, in this case, too, the control problem for the original non- 
linear system can be reduced to a similar control problem for linear system (2.5). 

3. F R E Q U E N C Y  C O N T R O L  F O R  THE F O R C E  M O T I O N  OF 
A N O N - L I N E A R  O S C I L L A T O R  

As an example, we shall consider the control problem for resonance oscillations of a one-degree-of- 
freedom non-linear system subject to random fluctuations of the natural frequency. The equation of 
the controlled motion takes the form 

±" + enYc + ¢~(x) + e{(t)g(x) = easing)t + E514u (3.1) 

Here 0(x) = dH(x)/dx, Fi(x) is the potential of the conservative part of the system and {(t) is a random 
perturbation satisfying the assumptions of Section 1. The control u is constructed as in Section 1. 

We put 2 = z and introduce the new variables y and 02 by the formulae [1] 

1 2 0 0 2 _  t0(y) 
y = ~Z +l-I(x), ~ Z(y,x) 

2~ Z(y, x) : +~/2(y- I-l(x), to(y) - 
T(y) 

(3.2) 

The period of motion is defined as 

dx £ T(y) 
Y Z(y, x) 

y = corIst 
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The second relation in (3.2) yields the formal dependence x = X(y, 02) and, respectively, z(y, x) = 
Z(y, 02). 

Substituting of the variables (3.2) transforms Eq. (3.1) into the system, similar to (1.1), 

= EY(y, 01, 02, ~(t), u)Z(y, 02) 

02 = o~(y) + e~yY(y ,  0 l, 02, {(t), u)Z(y, 0z) (3.3) 

Or = 
where 

Y(y, OpOz,~(t),u) -nZ(y,O 2) ~(t)g(X(y, O2))+asin01+e TM (3.4) 

If follows from Eqs (3.3) and (3.4) that an infinite number of lines of discontinuity similar to (1.2) 
can exist if the function Z(y, 02) is a 2n-periodic in 02. We will study the first harmonic resonance, for 
which conditions (1.2) and (1.3) take the form 

p(y) = o~(y)-f~ = 0, p(y*) = 0 

dp(y*)/dy = do(y*) ldy  = r~O 
(3.5) 

We use transformation (1.4) in order to analyse small deviations from resonance. This yields 

gv  = p(y) = o~(y)-f~, ~p = 01-02,  01 = 0 (3.6) 

As in Section 1, we seek the control strategy which counteracts frequency deviation from resonance. 
Small deviations are defined by formulae (1.9) and the criterion and the constraints of the problem are 
defined by formulae (1.10). Substituting the new variables (3.6) into Eqs (3.3), using relations (1.9), 
and reproducing the transformations of Sections 1 and 2, we find that control (2.12) or (2.20) are 
determined by the function 

V(y, 01, 02) = Z(y, 0) = ~ (3.7) 

(3.8) 

From relations (3.7) and (3.20) we drive the control synthesis in the form 

u = u 2 =-U0slgn( r  ~)slgn[o~(y)-O] 

where r = my(y*). The sign of the coefficient r can often be found without direct calculation of the 
frequency o(y): r > 0, if the system is "hard", and r < 0, if the system is "soft" in a small neighbourhood 
of the point y*. 

We will consider a different scheme of excitation for resonance oscillations. Suppose periodic excitation 
cannot be applied directly to the non-linear oscillator. A weak signal is amplified by a resonance circuit 
and transmitted to the input of the controlled non-linear system by interconnecting circuits. The 
equations of motion of two loosely coupled oscillators are written in the form 

(3.9) 
5( + enR + q~(x) + I~(t)g(x) E 514 = u + e f ( v ,  ~) 
fg + ebfg + f~2 g = easinf~t + es(x, Yc) 

The functions fog, ~) and s(x, k) represent the interconnections of both subsystems. 
We reduce system (3.9) to the standard form. By using formulae (3.2), we replace the variables x, k 

by the variables y, 02. Then, we define the variables ~g, ~ by the standard transformation 

lit = Rcos0 l, ~ = -f~Rsin01 (3.10) 

Substituting expressions (3.2) and (3.10) into Eqs (3.9) using the notation of Section 1, we reduce 
system (3.9) to the form 

g = -~)[~(R, 01, 03) + S(y ,  02)]sin01 

: = e~[f(y, 02) 4- O(R, Ol)Z(y , 02) + A(y, 02)~(t ) 4" el/4F(y, 02)U ] 
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01 -~R[~F(R,  01, 03) +S(y, 02)]cos01 (3.11) f2 

Oe = o~(y) + e-~y[f(y, 02) + O(R, 01)Z(y, 02) + A(y, 02)~(t ) + el/4F(y, 02)u ] 

03 = 

where Z(y, 02) = k, and the other coefficients take the form 

q~(R, 0 l, 03) = b ~ R s i n 0 1  + as in0~ 

f (y ,  02)--- -nZZ(y, 02) , A(y, 02) = -g(X(y,  02))Z(y, 02) 
(3.12) 

F(y, 02) = Z(y, Oz) 

S(y, 02) = s(X(y, 02), Z(y, 02)), O(R, 01) = f (Rcos01 - f2Rsin01) 

The non-linear connections can generate an infinite number of resonance relations, similar to (1.2). 
Suppose the aim of the control is to sustain the first-harmonic resonance oscillations. In this case, the 
resonance condition (3.5) remains valid. 

We introduce the variables 

to = 02--01 ,  q)l = 01--03 ,  02 = 0 
1/2 (3.13) 

p v  = p(y) = o ~ ( y ) - ~ ,  ~t = e 

Substitution of relations (3.5) and (3.13) in system (3.13) yields the equations 

/~ = - gt2[Wl(R, 0 + tO, to1) + SI(0 ,  cp)] + 3 . . .  

tpl = - g2[utl2(R, 0 + t 0, (Pl) + $2(0, to)] + 3 . . .  

0 = ~t[f*(0) + Q*(R, O, to)] + gA*(0)~(t)  + IJ,3/2F*(O)u... (3.14) 
2 ~0 = ~ tv+~t  ... 

0 = ~ + ~ t . . .  

The coefficients f*, A*. F* are determined as in Section 1, the function Q* = r-lO(R, 0 - qOZ(y*, 0), 
and the functions q~i and Si are obtained by substituting the formulae y = y*, 01 = 0 + to, 03 = 0 + 
9 + % into the right-hand sides of the corresponding equations in system (3.11). 

System (3.14) involves the slow variables R and q)l, the "semi-fast" variables v and to, and the variable 
0. The motion can be analysed by the technique of successive averaging, with due regard to the second- 
approximation terms. However, the fixed points can be found from the first-approximation system. 

By analogy with Section 1, we separate out a truncated averaged system from system (3.14). Averaging 
the right hand-sides of system (3.14) in the fast phase 0, taking into account the functions (3.12) and 
neglecting the small terms of higher orders, we obtain 

/~ = --~t2[l[/l( R' to1) + SI(to)] 

2 
tPl = -ILl" [I]/2(R, tol) + s2(to)] (3.15) 
b = gt[[] 0 + [~I(R, to)] 

where 

¢p = g v  

130 = ( f * ( 0 ) ) ,  ~I(R,  to) = (Q*(R, O, to)) 

• i( R, t o l )  = (qJi( R, 0 + to, tol)), si(to) = (Si(O, to)) 

The fixed points can be found as the solution of the system 

v = 0 ,  130+fil(R, to) = 0, ¥i(R,~l)+si(to) = 0 (3.16) 
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Separation of the terms which depend on the phases ¢p and % eliminates the secondary resonances 
from consideration. The stability of the steady states is investigated by the well-known method [1]. 

We will find the control which counteracts the frequency deviations from resonance. We will investigate 
the deviations from the stationary point R*, q0*,i~p~ as t - l/g, and g ~ 0. Since the rates of change of 
the slow and "semi-fast" variables are different, the rates of the deviations should be different. Comparing 
the exponents of the small parameter !n Eqs (3.14), we represent the small deviations in the form 

gl[2Q 1), I -tl/2P = ( D - I P * ,  1,13/2H = R - R * ,  g3tZG = q01- q0~ (3.17) 

This implies that the deviations of R* and q)~ from the fixed values are small compared with the 
deviations of the "semi-fast" variables. 

We substitute the variables (3.17) into system (3.14), repeat the transformations of Section I and 2, 
and take into account the exponents of the small parameter. As a result, we obtain that as g ~ 0 the 
equations for the variables P and Q are separated and become independent of the variables G and H. 
This implies that the criterion and the constraints of the problem can be defined by formulae (1.10), 
independent of the variables G and H. 

It follows from the Theorem of Section 2 that, as g ~ 0, 0 ~< "c ~< To, the process {P, Q, G, H} converges 
to the solution [p, q, g, h] of an approximated linearized system. As in Eqs (2.7), the deterministic part 
of the linearized system corresponds to the variational equations for the averaged system (3.15), and 
the control and excitation forces are taken into account. With due regard to relations (3.17) we obtain 
that, as g ~ 0, the approximating equations take the form 

p' = q, p(0) = 0 

q' = cp  + Fo(O)u + o w ' ( x ) ,  q(0) = 0 (3.18) 

g' = k i p ,  h' = k2p 

where 

c = 0~I(R*, q0)/t)q0, Fo(O ) = Z ( y * , O ) ,  k i = ds i (q)*) /d t  p 

The prime denotes a derivative d/d'~, "c = gt.  
The equations for the variables p and q are separated, that is, the previous conclusions, relating to 

the construction of the quasi-optimal control in terms of the variables P and Q, remain valid. In particular, 
this yields the feedback control in the form 

U = U 2 = - U o s i g n ( r - 1 2 ) s i g n [ c o ( y ) - f ~ ]  (3.19) 

This means that, under the assumptions of Section 1, the quasi-optimal control (3.19) is independent 
of the perturbation and the parameters of the linear subsystem. The only required parameter is the 
sign of the coefficient r. This result remains valid for a deterministic system. 
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